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Abstract Quantum systems that are confined to circuit geometries are called quantum cir-
cuits. Macroscopic superconducting circuits are quantum circuits which can be modelled
using a Quantisation by Parts scheme based on the macroscopic wave function approach of
Feynman. This paper studies the circuit composed of an input wire and an output plate. We
find that in order to achieve a consistent theory of supercurrent flow we have to generalize
the quantisation by parts scheme to quantise in a path space. The generalized theory pre-
dicts a current flow down the wire into the plane. In addition to a current flowing radially
outwards in the plane, the theory allows a circulating current round the origin. Strikingly, the
circulating current can flow clockwise or anti-clockwise in such a way as to generate a mag-
netic moment of magnitude half of a Bohr magneton for an orbiting electron in an atom and
a magnetic flux half that of the magnetic flux quantum of a superconducting ring. There is
also the possibility of a macroscopic superposition of the two states of opposing circulating
currents resembling a Schrödinger’s cat situation. Furthermore, we outline a setup involving
an external magnetic field that may allow experimental tests of the theory.

Keywords Quantum circuits · Quantisation

1 Introduction

We present an application of the Quantisation by Parts scheme based on a macroscopic
wave function approach to a two-branch quantum circuit consisting of a superconducting
wire connecting to a superconducting plane. The macroscopic wave function approach to
superconductivity was championed by Feynman [1], and a quantisation by parts scheme
was introduced by Wan et. al. to establish a systematic theory for such an approach [2–7].
The scheme is based on the mathematical treatment of point interactions studied by a num-
ber of people [8–10]. A circuit, be it classical or quantum, composes of continuous seg-
ments called branches. These branches are connected to form a circuit. A point where
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branches are connected is known as a branch point or a junction. For a quantum circuit
the branches may not have direct physical contact at a branch point; a quantum current
can tunnel through the branch point. The geometry may alter abruptly at a branch point,
e.g., a single branch may be connected to two other branches down stream. This prevents
any traditional quantisation method which treats the geometry of the whole system as a
Riemannian manifold to proceed. The method of quantisation by parts has proved to be
applicable to a variety of circuit configurations. The idea is to treat the geometry of each
branch as a Euclidean space on which we can carry out an initial quantisation. A quantum
theory for the whole circuit can then be obtained by suitably combining all the individually
quantised branches together. More specifically the scheme consists of three quantisation
stages [7]:

1. Partial Quantisation Each branch of the circuit is associated an appropriate Hilbert
space of square integral functions over the branch, be it a line or a plane. The operators
representing the observables of interest on each branch during partial quantisation are
not required to be selfadjoint; it is sufficient to be symmetric.

2. Composite Quantisation This involves the construction of the Hilbert space and ob-
servables for the entire circuit. The Hilbert space of the whole circuit is taken to be the
direct sum of the individual Hilbert spaces:

Hc = H1 ⊕ H2 ⊕ . . . . (1)

We shall denote composite quantities for the system as a whole by the superscript c while
those for partial quantisation for each branch are denoted by a numerical subscript. Ob-
servables for the circuit system as a whole are taken to be appropriate selfadjoint or max-
imal symmetric extensions of the direct sums of the corresponding partially quantised
operators.1 This process usually results in non-uniqueness as there may be an infinite
number of extensions for each observable. This turns out to be of crucial importance as
this enables us to deal with a variety of circuits. Each particular circuit configuration
would corresponds to a particular set of extensions, chosen by considering the physics
involved. Selfadjoint extensions of symmetric operators are often specifiable by bound-
ary conditions which make things a lot more transparent; a summary of the technicalities
involved may be found in [7] (pp. 113–130, pp. 209–212), [8, 9].

3. Correlative Quantisation For a given system we need to correlate certain observables
in order to produce the desired physical properties. This is achieved by correlating the
selfadjoint extensions of the corresponding operators based on some physical assump-
tions about the nature of the system. For instance we require the compatibility of the
Hamiltonian and the momentum of a superconducting circuit, in the sense that the two
observables must share common eigenfunctions, in order to maintain a persistent dc su-
percurrent observed in experiments [7] (p. 519).

For the specific case of a superconducting wire linked to a superconducting plane, as
shown diagrammatically in Fig. 2 in [8, 9], we want to see what would happen if a supercur-
rent is fed into the wire, e.g., how the current will flow into the superconducting plane. We
are particularly interested to see if anything new, both in terms of the fundamental theory of
quantisation by parts and in terms of any new physical effects, emerges from such a circuit
configuration. In Sect. 2 we detail the traditional approach quantising on the physical space,

1The reasoning for incorporating maximal symmetric operators in the representation of quantum observables
is available in [7] (p. 403).
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and explain the need to generalize to quantisation on path spaces. Section 3 provides a brief
introduction to the concepts of path spaces and of Hilbert spaces on path spaces, followed
by quantisation in a two-dimensional plane with a hole. In Sect. 4 we extend the quantisa-
tion to the circuit of a superconducting plane linked to a superconducting wire. Section 5
demonstrates the possible existence of a Schrödinger’s cat state on this circuit. In Sect. 6 we
outline a possible experimental setup to test for this state.

2 Quantisation in the Physical Space E
− × E

2
h

2.1 Hilbert Spaces on Physical Spaces

A two-branch circuit formed by a superconducting wire connected to a superconducting
plane can be realized mathematically by idealizing the wire (first branch) as a half-line, i.e.,
the one-dimensional Euclidean space E

− = {x ∈ (−∞,0)} with volume element dx,2 and
the plane (second branch) as a Euclidean plane E

2
h with a hole at the origin, i.e., with its

origin removed. Physically one would imagine the current to flow through the surface of the
wire; the current would then flow directly into a small circle of diameter of the wire round
the origin, not through the origin of the plane, and then spread out into the plane. As will
be seen later, the removal of the origin will make a fundamental difference to the path space
formulation of our theory.

We shall denote by C∞
0 (E−) the set of infinitely differentiable functions of compact

support on E
−. Functions on E

2
h may be dependent on the usual polar coordinates r and

θ . Functions depending only on r are regarded as functions on R
+ = {r ∈ (0,∞)}, while

functions depending only on θ are regarded as functions on C , the circle of unit radius
centered at the origin of the plane. The notation R

+ signifies that the set {r ∈ (0,∞)} does
not form a Euclidean space; the volume element here is rdr . The symbol C∞

0 (R+) denotes
the set of infinitely differentiable functions of compact support on R

+. Furthermore L2(E−)

and L2(E2
h) shall denote the Hilbert spaces formed by square-integrable functions on E

−
and E

2
h respectively. Also we shall adopt the following notations:

H(E−) = L2(E−) =
{
φ1(x) :

∫ 0

−∞
φ∗

1 (x)φ1(x)dx < ∞
}
, (2)

H(R+) = L2(R+, rdr) =
{
φ2(r) :

∫ ∞

0
φ∗

2 (r)φ2(r)rdr < ∞
}
, (3)

H(C) = L2(C, dθ) =
{
η(θ) :

∫ 2π

0
η∗(θ)η(θ)dθ < ∞

}
, (4)

H(E2
h) = L2(E2

h) = L2(R+, rdr) ⊗ L2(C, dθ), (5)

Hc = L2(E−) ⊕ L2(E2
h). (6)

The subscripts 1, 2 signify functions on branches 1 and 2 respectively. Equation (5) indi-
cates that H(E2

h) can be decomposed into a direct product of a radial part and an angular
part. The identity operators on H(E−), H(R+) and H(C) are denoted by Î(E−), Î(R+) and
Î(C) respectively. Furthermore, the zero elements in H(E−), H(E2

h) , H(R+) and H(C) are

2The real line as a Euclidean space is denoted by E = {x ∈ (−∞,∞)}.
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denoted by 0(E−), 0(E2
h), 0(R+) and 0(C) respectively so that, for example, an element

φ1(x) ∈ H(E−) can be extended to Hc as φ1(x) ⊕ 0(E2
h). For clarity we shall denote the

zero operators in these spaces by 0̂(E−), 0̂(Eh
2), 0̂(R+) and 0̂(C) respectively.

Let L̂(C) denotes the selfadjoint operator in H(C) defined by the operator expression
−i�∂/∂θ acting on the domain of absolutely continuous functions η(θ) on C satisfying the
usual periodic boundary condition [7] (pp. 75–77, p. 480):

η(θ) = η(θ + 2π). (7)

L̂(C) admits the following eigenfunctions

ηn(θ) = einθ , n = 0,±1,±2, . . . , (8)

corresponding to eigenvalues n�. We shall denote the eigensubspaces corresponding to
eigenfunctions ηn(θ) by Ln(C). We can decompose H(C) into a direct sum of Ln(C):

H(C) = ⊕nLn(C). (9)

Let

Hn(E
2
h) = H(R+) ⊗ Ln(C). (10)

We then have

H(E2
h) = L2(E2

h) = ⊕nHn(E
2
h). (11)

For partial quantisation on the branches the Hilbert spaces are taken to be H(E−) and
H(E2

h). The Hilbert space for the whole system in composite quantisation is given by Hc

which can be decomposed as

Hc = ⊕nHc
n, Hc

n = H(E−) ⊕ Hn(E
2
h). (12)

2.2 Angular and Linear Momentum Operators

2.2.1 Partial and Composition Quantisation

The angular momentum operator in H(E2
h) is taken to be

L̂(E2
h) = Î(R+) ⊗ L̂(C). (13)

This represents a property of our circuit which is totally localized in one branch of the circuit,
i.e., in the plane, since there can be no angular momentum attached to the half-line. In other
words the angular momentum operator in H(E−) must be taken as 0̂(E−). The composite
angular momentum operator in Hc for the circuit as a whole is therefore

L̂c = 0̂(E−) ⊕
(̂
I(R+) ⊗ L̂(C)

)
. (14)

A wave function in Hc of the form

ηc
n = 0(E−) ⊕

(
φ2(r) ⊗ ηn(θ)

)
(15)
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is an eigenfunction of L̂c which can then be interpreted in the standard fashion as repre-
senting a state having angular momentum n�. This is an example of local observables [7]
(pp. 185–195).

Next, we can construct the linear momentum of the system from the linear momentum
p(E−) on the half-line E

− and the radial momentum pr(E
2
h) on the plane E

2
h. In partial

quantisation the quantised versions of these two momenta are given by the following opera-
tors:

p̂0(E
−) = −i�

(
d

dx

)
0

, (16)

p̂r0(E
2
h) = −i�

(
∂

∂r
+ 1

2r

)
0

⊗ Î(C). (17)

The subscript 0 is used to indicate that the above operator expressions act respectively on
the domains C∞

0 (E−) and C∞
0 (E2

h). These operators are not essentially selfadjoint, but only
essentially strictly maximal symmetric [7] (p. 100, p. 127, p. 574), [11]. In composite quan-
tisation we start with the direct sum

P̂ c
0 = p̂0(E

−) ⊕ p̂r0(E
2
h) (18)

acting on the domain D(P̂ c
0 ) = {�c

0 ∈ C∞
0 (E−) ⊕ C∞

0 (E2
h)} in the composite Hilbert space

Hc . The operator P̂ c
0 is not selfadjoint, but has many selfadjoint extensions. For later com-

parison, let us consider the restriction P̂ c
0,n of P̂ c

0 to Hc
n, the subspace of Hc corresponding

to angular momentum value n�. Operator P̂ c
0,n has deficiency indices (1,1) and hence admits

a family of selfadjoint extensions P̂ c
λn

in Hc
n which can be characterized by a real parameter

λn ∈ (−π,π ]. An explicit construction of the family of selfadjoint extensions is detailed in
Appendix 1. P̂ c

λn
possesses the following generalized eigenfunctions

�c
λn,p = e-ipx ⊕ eiλn

(
1√
2πr

e-ipr ⊗ ηn(θ)

)
, p �= 0, -i = i/�. (19)

This wave function would represents a state with non-vanishing linear and angular momen-
tum.

2.2.2 The Zero Angular Momentum Case

Let us consider the case when n = 0, i.e., consider various quantities in the subspace Hc
0.

Consistent with standard quantum theory we have the following interpretation:

1. The momentum operator in Hc
0 is P̂ c

λ0
. Its eigenfunction �c

λ0,p represents the state of a
beam of Cooper pairs travelling down the half-line with linear momentum p ∈ (−∞,∞).

2. The probability current flowing down the line may be taken as p/mc , where mc is the
mass of a Cooper pair, being twice that of an electron mass me [7] (p. 447, p. 535).

3. The probability current density in the plane is taken as p/2πmcr so that the total prob-
ability current flowing radially outwards is equal to p/mc . The probability current is
therefore conserved during this process since the total probability current radiating out at
any radius on the plane is equal to the probability current flowing down the half-line into
the plane.

4. There is no circulating probability current in the plane due to the absence of angular
momentum.
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5. The flow of Cooper pairs gives rise to an electric current, i.e., a supercurrent. This su-
percurrent is obtained by multiplying the charge of a Cooper pair qc into the probability
current. Here qc , taken to be twice the elementary charge e, is positive.

2.3 Supercurrent Operator

Previous studies show that we can introduce a supercurrent operator, based on the linear
momentum operator of the system [2] to [7]. In the subspace Hc

0 the supercurrent operator
is

Ĵ c
λ0

= − qc

mc

P̂ c
λ0

(20)

which would admits �c
λ0,p as eigenfunction with eigenvalues j = −(qc/mc)p. In line with

previous work we can use �c
λ0,p to represent a superconducting state with supercurrent j

flowing down the half-line into the plane on which the current flows radially outwards with-
out any circulating current on the plane. The wave function �c

λn,p would entail a circulating
supercurrent as well.

The linear momentum and the supercurrent operators may be called global observables
which relate to wave functions on all the branches. In contrast, the angular momentum is a
local observable localized in only one branch. When the system is in an angular momentum
eigenstate ηc

n there is a circulating current on the plane round the origin but there is no
current flowing down the half-line and no current flowing radially outwards on the plane.

To maintain a stable dc supercurrent we require the superconducting state to be an eigen-
function of the Hamiltonian of the system [7] (p. 519). In the next section we shall investigate
whether there exists such a Hamiltonian.

2.4 Hamiltonians

For partial quantisation on the branches we have

Ĥ10 = − �
2

2mc

(
d2

dx2

)
0

in H(E−), (21)

Ĥ20 = − �
2

2mc

{(
∂2

∂r2
+ 1

r

∂

∂r

)
0

⊗ Î(C) +
(

1

r2

)
0

Î(R+) ⊗ −1

�2
L̂(C)2

}
in H(E2

h), (22)

where the operator expressions

(
d2

dx2

)
0

, and

(
1

r2

)
0

,

(
∂2

∂r2
+ 1

r

∂

∂r

)
0

(23)

are defined respectively on

C∞
0 (E−) and C∞

0 (R+). (24)

For composite quantisation for the circuit as a whole we first construct the following
direct sum

Ĥ c
0 = Ĥ10 ⊕ Ĥ20 in Hc. (25)

This operator has been studied in details [8]. It has deficiency indices (2,2) and hence admits
a 4-parameter family of selfadjoint extensions specifiable by boundary conditions set out in
Appendix 2. The composite Hamiltonian is to be chosen from one of these extensions.
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2.5 Correlative Quantisation

We want to correlate the Hamiltonian with the supercurrent operator to achieve a state of sta-
ble dc supercurrent. Unfortunately �c

λn,p violates the boundary conditions for any selfadjoint
extension of Ĥ c

0 (see Appendix 2). One can gain an appreciation of this result by showing
that Ĥ c

0 �c
λn,p is not even formally proportional to �c

λn,p . We will say that the Hamiltonian is
incompatible with the supercurrent (linear momentum) operator. This implies that it is not
possible to main a stable dc suppercurrent flowing down the half-line and radially outwards
in the plane if the Hamiltonian for such a circuit is chosen from one of the selfadjoint ex-
tensions of Hc

0 . This result is counter intuitive as one would think it physically possible to
establish a stead dc supercurrent flowing from the half-line to the plane.

There is a way out of this difficulty: if the quantum theory on the plane is formulated in
the path space, instead of the traditional physical space, we can find a Hamiltonian compat-
ible with the supercurrent (linear momentum) operator.

3 Quantisation on the Path Space of E
2
h

3.1 Path Space and Hilbert Space of Functions on the Path Space of E
2
h

Equation (5) shows the construction of L2(E2
h) in terms of the tensor product of L2(R+, rdr)

and L2(C, dθ). The latter is formed by functions on the circle C . So far we have adopted the
traditional coordinate representation of wave functions in the construction of Hilbert spaces.
Such functions are defined on the physical space. As early as 1931 Dirac had pointed out that
the position probability density function only determines the wave function up to an arbitrary
phase [12]. Dirac suggested that it might be possible to generalize quantum mechanics in
terms of wave functions defined on paths connecting points in the physical space, rather than
wave functions defined directly on the physical space. In other words one should introduce
the notion of path spaces, as opposed to physical spaces, and then define functions on these
path spaces. While remaining single-valued in the path space these new wave functions may
be multi-valued on the physical space. There have been many well-established path-space
formulations of quantum mechanics [12–15]. We shall briefly set out a formulation directly
applicable to our circuit configuration.

Let the physical space be denoted by M. A path in M is a differentiable curve in M. To
construct a path space and functions on it we proceed as follows:

1. Choose a convenient point m0 in M as a base point at the outset.
2. Link up any arbitrary point m ∈ M to m0 by a differentiable curve (path) σm. Let 
m(M)

denotes all the paths linking the point m to the fixed base point m0. A path space 
(M)

of M is then formed by all these paths for all the point in M, i.e.,


(M) = {
m(M) : m ∈ M}. (26)

Given m the paths in 
m(M) may or may not be homotopic, depending on the topological
nature of M.

3. One may impose various conditions to restrict the vast number of paths, even for each
point m. One common condition is to regard all homotopic paths linking m to m0 as
equivalent. There may be many inequivalent paths for each point m, depending on the
topology of M.
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4. One then defines functions �(σm) on the path space 
(M) by mapping 
(M) to the set
of complex numbers C. Again various conditions may be imposed on these functions.
An obvious one would be to require its absolute value square |�(σm)|2 be single-valued
for each m ∈ M independent of any particular path σm, since this is going to be related to
a probability density function on M in quantum mechanics.

5. By further restriction to square-integrability we can arrive at a Hilbert space H(
(M))

of functions on 
(M). Such a construction is generally not unique, depending on the
restrictions on both the nature of the paths and of the functions, and the topology of the
physical space.

A description of an explicit formulation of such an approach for quantum particles confined
to E

2
h is given by Wan, Bradshaw and Trueman [5, 6] and Wan [7] (pp. 637–657). Generally

if the physical space is the Euclidean plane E
2 then all the paths σm linking a given point m

to m0 are known to be homotopic and hence equivalent. As a result functions on path space
would lead to the usual Hilbert space L2(E2) constructed from square-integrable functions
on the physical space E

2, and one would arrive at the same results as the traditional quantum
theory set up directly L2(E2). However, E

2
h is topologically different from E

2 and not all the
paths linking m to m0 are homotopic. Functions on the path space of E

2
h would give rise

to new Hilbert spaces formed by wave functions which are multi-valued in E
2
h. For our

present application we need to establish a path space on the circle C in the plane, centered
at the coordinate origin of the plane. A point on the circle is specified by the value of the
polar angle θ . There is more to polar angle than meet the eye [7] (pp. 56–61, pp. 650–651).
Allowing θ to be in the range [0,2π ] the two extreme values θ = 0, 2π would refer to the
same point in C . Now, choose the fixed base point m0 to be the point θ = 0. As we move
away from this base point anti-clockwise to another point m on the circle we trace out a
path (curve) on the circle linking m0 to m. Note that a curve or a path is a mapping from an
interval of the reals to the circle. The mappings for moving clockwise and anti-clockwise
are different, giving rise to different paths. There are infinite number of different paths from
the base point m0 to any point m depending on how many times the curve goes round the
circle before ending up at the point m. These paths can be classified by an integer � known
as the winding number of the path. For examples we can have

1. a path, denoted by σm,0, from m0 directly to m going anti-clockwise but without going
round the circle,

2. a path, denoted by σm,1, from m0 to m after going round the circle anti-clockwise once,
3. a path, denoted by σm,2, from m0 to m after going round the circle anti-clockwise 2 times,
4. a path, denoted by σm,−1, from m0 directly to m going clockwise but without going round

the circle once,
5. a path, denoted by σm,−2, from m0 to m after going round the circle clockwise 2 times.

Generally we shall denote a path by σm,�, where m ∈ C and � = 0,±1,±2, . . . . Let all the
paths linking m0 to m be denoted by 
m(C), and let


(C) = {
m(C) : m ∈ C}. (27)

We call 
(C) the path space on the circle. Next, define functions on the path space by
mappings

F : 
(C) → C by F : σm,� → F(σm,�) ∈ C. (28)

Then such functions are functions of both the point m and the winding number �, i.e., F =
F(m,�), and hence are multi-valued on C . The next question to settle is the nature of this
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multi-valuedness. To make this precise we can introduce an extended polar coordinate θex

which varies from −∞ to ∞. The point is to use θex to follow the point m as it goes round
the circle in a given path. In other words, the value of θex will specify both the position m

on the circle as well as the winding number � of the path. This is achieved by relating θex to
θ and the winding number � by [7] (pp. 650–651).

θex = θ + 2�π, θ ∈ [0,2π). (29)

Since we desire a probability interpretation of the function, i.e., |F(m,�)|2 is to be inter-
preted as the position probability density of the particle on the circle, we should restrict
functions to the form:

F = Fγ (m,�) = Fγ (m,�) = ei�γ f (m), (30)

where γ is a real constant in the range [0,2π). The main feature here is that Fγ (m,�) is
not a single-valued function of m and does not satisfy the periodic boundary condition in
(7), unless γ is chosen to be zero. An alternative description is to rewrite the function as a
single-valued function of θex, denoted by ηγ (θex), i.e.,

ηγ (θex) = ei�γ f (m). (31)

Such a function satisfies the following quasi-periodic boundary condition:

ηγ (θex + 2π) = eiγ ηγ (θex). (32)

For a given γ the set of functions of this form which are square-integrable over the range of
θex ∈ [0,2π], i.e.,

∫ 2π

0
ηγ (θex)

∗ηγ (θex)dθex < ∞, (33)

forms a Hilbert space, to be denoted by Hγ (
(C)). In this way we arrive at a one-parameter
family of Hilbert spaces Hγ (
(C)), γ ∈ [0,2π), based on functions ηγ (θex) on the path
space 
(C) of the circle [7] (p. 649).

By replacing L2(C, dθ) in (5) we obtain a new Hilbert space Hγ (
(E2
h)) constructed

from the tensor product of L2(R+, rdr) and Hγ (
(C)), i.e.,

Hγ (
(E2
h)) = L2(R+, rdr) ⊗ Hγ (
(C)). (34)

Members of Hγ (
(E2
h)) are linear combinations of functions of the form φ2(r) ⊗ ηγ (θex).

The seemingly arbitrary parameter γ can be chosen by the physical properties of the system,
as will be seen later.

3.2 Angular Momentum and Radial Momentum in Hγ (
(E2
h))

For the angular momentum in Hγ (
(E2
h)) we can adopt operator expression obtained by a

slight modification of L̂(C) introduced earlier, i.e., we have [7] (p. 654–655),

L̂γ = Î(R+) ⊗
(

−i�
∂

∂θ ex

)
. (35)
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This operator is selfadjoint and admits eigenfunctions of the form φ2(r) ⊗ ηγ,n(θex) where

ηγ,n(θex) = e-iLγ,nθex , n = 0,±1,±2, . . . , (36)

and

Lγ,n = �

(
n + γ

2π

)
(37)

which are the corresponding eigenvalues. These eigenfunctions satisfy the quasi-periodic
boundary condition in (32). A striking feature here is the absence of a zero angular mo-
mentum eigenstate, i.e., Lγ,n �= 0 unless γ = 0. This will have important consequences in
composite quantisation.

Each ηγ,n generates a subspace Lγ,n(
(C)) of Hγ (
(C)) with Hγ (
(C)) =
⊕CnLγ,n(
(E2

h)). To avoid confusion later we have inserted a subscript C to indicate a
direct sum in Hγ (
(C)). Let

Hγ,n(
(E2
h)) = L2(R+, rdr) ⊗ Lγ,n(
(C)). (38)

Then we have

Hγ (
(E2
h)) = L2(R+, rdr) ⊗

(
⊕Cn Lγ,n(
(C))

)
(39)

= ⊕CnHγ,n(
(E2
h)). (40)

As it will become apparent later it is the subspaces Hγ,n(
(E2
h)) we shall be working in,

rather than Hγ (
(E2
h)). We shall denote the restriction of the angular momentum operator

L̂γ to Hγ,n(
(E2
h)) by L̂γ,n. For the radial momentum in Hγ,n(
(E2

h)) we have

p̂r0γ,n = −i�
( ∂

∂r
+ 1

2r

)
0
⊗ Îγ,n(
(C)), (41)

where Îγ,n(
(C)) is the restriction of the identity operator Îγ (
(C)) on Hγ (
(C)) to
Lγ,n(
(C)).

3.3 Hamiltonian in Hγ,n(
(E2
h))

3.3.1 General Consideration

Following (22) the partially quantised Hamiltonian in Hγ,n(
(E2
h)) is defined by the fol-

lowing operator:

Ĥ0γ,n(
(E2
h)) = − �

2

2mc

{(
∂2

∂r2
+ 1

r

∂

∂r

)
0

⊗ Îγ,n(
(C)) +
(

1

r2

)
0

Î(R+) ⊗ −1

�2
L̂2

γ,n

}
,

(42)
which can be rewritten as

Ĥ0γ,n = − �
2

2mc

{[(
∂2

∂r2
+ 1

r

∂

∂r

)
0

−
(

1

r2

)
0

(
n + γ

2π

)2
]

⊗ Îγ,n(
(C))

}
. (43)

There are two special cases crucial in correlative quantisation later:
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1. Case 1 γ = π and n = 0. The Hamiltonian in Hπ,0(
(E2
h)) reduces to

Ĥ0π,0 = − �
2

2mc

{(
∂2

∂r2
+ 1

r

∂

∂r
− 1

4r2

)
0

⊗ Îπ,0(
(C))

}
. (44)

2. Case 2 γ = π and n = −1. The Hamiltonian Hπ,−1(
(E2
h)) reduces to

Ĥ0π,−1 = − �
2

2mc

{(
∂2

∂r2
+ 1

r

∂

∂r
− 1

4r2

)
0

⊗ Îπ,−1(
(C))

}
. (45)

Comparing with (41) and (37) we see that:

1. Case 1 γ = π and n = 0:
(a) The quasi-periodic boundary condition in (32) reduces to ηγ (θex + 2π) = −ηγ (θex).
(b) The angular momentum operator is L̂π,0 which has eigenvalue Lπ,0 = �/2 in

Hπ,0(
(E2
h)).

(c) The Hamiltonian becomes

Ĥ0π,0 = 1

2mc

(
p̂r0π,0

)2
. (46)

2. Case 2 γ = π and n = −1:
(a) The quasi-periodic boundary condition in (32) reduces to ηγ (θex + 2π) = −ηγ (θex).
(b) The angular momentum operator is L̂π,−1 which has eigenvalue Lπ,−1 = −�/2 in

Hπ,−1(
(E2
h)).

(c) The Hamiltonian reduces to

Ĥ0π,−1 = 1

2mc

(
p̂r0π,−1

)2
. (47)

3.3.2 Notation: Subspaces and Operators in Them

Since we shall only be considering the cases with γ = π and n = 0,−1 we will introduce
the following notation to highlight the angular momentum values:

1. The subspace Hπ,0(
(E2
h)) with angular momentum value +�/2 will be denoted by

H+(
(E2
h)). The operators p̂r0π,0, L̂π,0 and Ĥ0π,0 will be denoted by p̂r0,+, L̂+ and Ĥ0,+

respectively.
2. The subspace Hπ,−1(
(E2

h)) with angular momentum value −�/2 will be denoted by
H−(
(E2

h)). The operators p̂r0π,−1, L̂π,−1 and Ĥ0π,−1 will be denoted by p̂r0,−, L̂− and
Ĥ0,− respectively.

3. The eigenfunctions of L̂+ and L̂− are similarly denoted, i.e., η+ = ηπ,0 and η− = ηπ,−1.

3.3.3 Notation: Direct Sums of Subspaces and Operators

We now introduce the following direct sums:

1. The direct sum of the spaces H+(
(E2
h)) and H−(
(E2

h)) is denoted by H±(
(E2
h)),

i.e.,

H±(
(E2
h)) = H+(
(E2

h)) ⊕C H−1(
(E2
h)) (48)
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= L2(R+, rdr) ⊗
(

Lπ,0(
(C)) ⊕C Lπ,−1(
(C))
)
. (49)

The composite subscript ± is used to indicate that the direct sum space corresponds to
angular momentum values ±�/2.

2. The direct sum of angular momentum operators L̂+ and L̂−:

L̂± = L̂+ ⊕C L̂−. (50)

3. The direct sum of radial momentum operators p̂r0,+ and p̂r0,−:

p̂r0,± = p̂r0,+ ⊕C p̂r0,−. (51)

4. The direct sum of the Hamiltonians Ĥ0,+ and Ĥ0,−:

Ĥ0,± = Ĥ0,+ ⊕C Ĥ0,− = 1

2mc

((
p̂r0,+

)2 ⊕C
(
p̂r0,−

)2
)

= 1

2mc

(
p̂r0,±

)2
. (52)

4 Quantisation on the Path Space of E
− × E

2
h

4.1 The Hilbert Space

For the circuit geometry E
− ×E

2
h we can carry out composite quantisation incorporating the

path space on the circle by introducing the following Hilbert spaces

Hc
γ,n = L2(E−) ⊕ Hγ,n(
(E2

h)), (53)

Hc
γ = L2(E−) ⊕ Hγ (
(E2

h)), (54)

= L2(E−) ⊕ (⊕CnHγ,n(
(E2
h))

)
, (55)

= ⊕CnHc
γ,n. (56)

At first sight Hc
γ should be the Hilbert space associated with the circuit geometry E

− × E
2
h.

As it turns out and contrary to expectation, it is Hc
γ,n which is directly associated with the

superconducting circuit system, on account of the compatibility requirement in correlative
quantisation. So, having partially quantised various quantities already we shall commence
the composite quantisation process by defining operators in Hc

γ,n.

4.2 Angular and Linear Momentum Operators

First we shall define the angular momentum operator L̂c
γ,n in Hc

γ,n by

L̂c
γ,n = 0̂(E−) ⊕ L̂γ,n. (57)

For linear momentum in Hc
γ,n we define the following operator

P̂ c
0γ,n = −i�

(
d

dx

)
0

⊕
(

−i�

(
∂

∂r
+ 1

2r

)
0

⊗ Îγ,n(
(C))

)
. (58)
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This operator has a family of selfadjoint extensions P̂ c
γ,λn

in Hc
γ,n, which is parameterizabled

by λn ∈ (−π,π] (see Appendix 3) and admits generalized eigenfunctions of the form

�c
γ,λn,p = e-ipx ⊕ eiλnψp,γ,n(r, θex), (59)

where

ψγ,n,p(r, θex) = 1√
2πr

e-ipr ⊗ ηγ,n(θex). (60)

These wave functions entail a non-zero angular momentum, unless γ = 0 and n = 0. The
linear momentum of the system shall be determined from the set of selfadjoint extensions
P̂ c

γ,λn
of P̂ c

0γ,n in conjunction with the Hamiltonian in correlative quantisation later. As before
we shall adopt the following the notation for L̂c

γ,n, P̂ c
0γ,n, P̂ c

γ,λn
, ηγ,n, ψγ,n,p , �c

γ,λn,p and
Hc

γ,n:

1. Case 1 γ = π and n = 0. We have L̂c+, P̂ c
0,+, P̂ c

λ+ , η+, ψ+,p, �c
λ+,p, Hc+.

2. Case 2 γ = π and n = −1. We have L̂c−, P̂ c
0,−, P̂ c

λ− , η−, ψ−,p, �c
λ−,p, Hc−.

4.3 Hamiltonians

Similar to (25) the composite Hamiltonian of the system in Hc
γ,n is obtained from an appro-

priate selfadjoint extension of

Ĥ c
0γ,n = − �

2

2mc

{(
d2

dx2

)
0

⊕
[(

∂2

∂r2
+ 1

r

∂

∂r

)
0

⊗ Îγ,n(
(C)) +
(

1

r2

)
0

Î(R+) ⊗ −1

�2
L̂2

γ,n

]}
. (61)

This operator can be rewritten as

Ĥ c
0γ,n = − �

2

2mc

{(
d2

dx2

)
0

⊕
[((

∂2

∂r2
+ 1

r

∂

∂r

)
− 1

r2

(
n + γ

2π

)2
)

0

⊗ Îγ,n(
(C))

]}
.

(62)
Again there are two special cases:

1. Case 1 γ = π and n = 0. The operator Ĥ c
0,+ in Hc+ reduces to

Ĥ c
0,+ = 1

2mc

(
P̂ c

0,+
)2

. (63)

We can immediately identify a family of selfadjoint extensions

Ĥ c
λ+ = 1

2mc

(
P̂ c

λ+

)2
. (64)

Clearly this Hamiltonian is compatible with P̂ c
λ+ and L̂c+; it admits eigenfunctions of the

form �c
λ+,p corresponding to linear momentum, angular momentum and energy eigen-

values p, �/2 and E+ = E = p2/2mc respectively.
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2. Case 2 γ = π and n = −1. The operator Ĥ c
0,− in Hc−, reduces to

Ĥ c
0,− = 1

2mc

(
P̂ c

0,−
)2

. (65)

We can immediately identify a family of selfadjoint extensions

Ĥ c
λ− = 1

2mc

(
P̂ c

λ−

)2
. (66)

This Hamiltonian is compatible with P̂ c− and L̂c−; it admits eigenfunctions of the form
�c

λ−,p corresponding to linear momentum, angular momentum and energy eigenvalues
p, −�/2 and E− = E = p2/2mc respectively.

As before we can define the following direct sums:

1. The direct sum space

Hc
± = Hc

+ ⊕C Hc
−. (67)

2. The direct sum angular momentum operator

L̂c
± = L̂c

+ ⊕C L̂c
−. (68)

3. The direct sum momentum operator P̂ c± = P̂ c
λ+ ⊕C P̂ c

λ− , where we have chosen a common
parameter λ±, i.e., we set

λ+ = λ− = λ±. (69)

Generalized eigenfunctions of P̂ c± are of the form

�c
λ±,p,(a+,a−) = e-ipx ⊕ eiλ±

(
1√
2πr

e-ipr ⊗ ηa+,a−(θex)

)
, (70)

where

ηa+,a−(θex) = a+η+(θex) + a−η−(θex). (71)

It is also possible to construct a direct sum with different λ+ and λ−. Although we have
chosen λ+ = λ− = λ± we shall still retain their separate identity in what follows to avoid
confusion.

4. A corresponding Hamiltonian in Hc± is

Ĥ c
± = 1

2m

(
P̂ c

±
)2

, (72)

which shares the generalized eigenfunctions of P̂ c±.

4.4 Correlative Quantisation

The results in the preceding section show that there exist compatible momentum and Hamil-
tonian operators. The compatibility requirement on the Hamiltonian and the momentum for
our superconducting circuit serves to select a single value π for γ and two possible val-
ues, ±�/2, for the angular momentum of the system. We have now arrived at three possible
prescriptions:
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1. Choose the Hilbert space Hc+. Then the linear and angular momenta are represented by
P̂ c

λ+ and L̂c+. The Hamiltonian corresponds to Ĥ c+. These three observables are compati-
ble and share eigenfunctions of the form �c

λ+,p .
2. Choose the Hilbert space Hc−. Then the linear and angular momenta are represented by

P̂ c
λ− and L̂c−. The Hamiltonian corresponds to Ĥ c−. These three observables are compati-

ble and share eigenfunctions of the form �c
λ−,p .

3. Choose the Hilbert space Hc±. Then the linear momentum is represented by P̂ c±. The

Hamiltonian corresponds to Ĥ c±. These two observables are compatible and share eigen-
functions of the form �c

λ±,p,(a+,a−). However, the angular momentum operator L̂c± does
not admit �c

λ±,p,(a+,a−) as an eigenfunction unless either a+ or a− is zero.

The natural choice would be to associate the Hilbert space Hc± with our circuit system with
observables P̂ c±, L̂c± and Ĥ c± and with the macroscopic wave function �c

λ±,p,(a+,a−) describ-
ing the state.

4.5 Interpretation

We have achieved our goal in deriving a theory which can describe a steady dc supercurrent
j = −(qc/mc)p flowing down the wire and then spreading out radially in the plane. A su-
perconducting state is described by either �c

λ+,p or �c
λ−,p , or a linear combination of them

�c
λ±,p,(a+,a−).
Our theory also gives rise to an angular momentum. The fact that the angular momentum

in �c
λ+,p and �c

λ−,p are not zero suggests the existence of an additional circulating supercur-
rent on the plane round the origin. We can go on to define the magnetic moment or magnetic
flux generated by the circulating current [7] (pp. 486–489), [16, 17]:

1. The circulating current is a local quantity localized in the plane. Only the component of
the wave function on the plane, i.e., ψπ,n,p in (60), contributes directly to it. Since ψπ,n,p

is an eigenfunction of L̂π,n corresponding to the eigenvalue Lπ,n a formal calculation
will give the following circulating electric current density on the plane [7] (pp. 486–489),
[16, 17]:

jn(r) = −qc

Lπ,n

mcr

∣∣ψπ,n,p

∣∣2 = −qc

Lπ,n

2πmcr2
. (73)

The current circulating in an annulus about the origin of thickness dr is djn(r) = jn(r)dr.

2. The magnetic moment associated with the current circulating in an annulus of thickness
dr is

πr2djn(r) = πr2jn(r)dr = −qc

Lπ,n

2mc

dr. (74)

An attempt to integrate this to obtain the total magnetic moment fails because ψπ,n,p

is a generalized eigenfunction of the radial momentum on the plane which is not nor-
malizable. The normalization procedure set out in Appendix 4 has to be employed. The
analysis in Appendix 4 shows that we should take the normalized magnetic moment ele-
ment due to current in the annulus defined by radii ra < rb to be

dMn =
∫ rb

ra
πr2jn(r)dr∫ rb

ra

∫ 2π

0 |ψπ,n,p|2rdrdθ
(75)
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so that the total magnetic moment over the plane is

Mn = lim
ra→0,rb→∞

∫ rb
ra

πr2jn(r)dr∫ rb
ra

∫ 2π

0 |ψπ,n,p|2rdrdθex

= − qc

2mc

Lπ,n. (76)

We can also define a corresponding magnetic moment operator in Hc
π,n:

M̂n = − qc

2mc

L̂π,n. (77)

3. For the magnetic flux associated with the current circulating in an annulus of thickness
dr we can make use of the expression for the self-inductance

Lqc (r) = mc

(
2πr

q2
c

)2

(78)

established for similar current configurations [7] (p. 483, p. 488), [17]. Note that we have
used the expression Lϕn in [17] for the self-inductance since the wave function ψπ,n,p

contains the effective normalization factor 1/
√

2πr for circular motion. We get

d�n =
( ∫ rb

ra
Lqc (r)jn(r)dr∫ rb

ra

∫ 2π

0 |ψπ,n,p|2rdrdθex

)
(79)

so that the total magnetic flux given rise by the circulating current over the plane is

�n = lim
ra→0,ra→∞

∫ rb
ra

Lqc (r)jn(r)dr∫ rb
ra

∫ 2π

0 |ψπ,n,p|2rdrdθex

(80)

= −2π

qc

Lπ,n. (81)

We can also define a corresponding flux operator

�̂n = −2π

qc

L̂π,n. (82)

4. For the two cases of interest, i.e., when n = 0,−1, we have:
(a) The magnetic moment:

M+ = − qc�

4mc

for n = 0 with the corresponding operator denoted by M̂+

M− = qc�

4mc

for n = −1 with the corresponding operator denoted by M̂−

. (83)

In terms of Bohr magneton μB for an orbiting electron in an atom we have [18]
(p. 160)

M+ = −1

2
μB, M− = 1

2
μB, μB = e�

2me

. (84)
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(b) Magnetic flux:

�+ = − 1
2�c for n = 0 with corresponding operator denoted by �̂+

�− = + 1
2�c for n = −1 with corresponding operator denoted by �̂−

, (85)

where �c = h/qc is the Cooper pair magnetic flux quantum associated with a su-
perconducting ring [7] (p. 515). Our present values are half that of the Cooper pair
magnetic flux quantum.

5. Physically the wave function �c
λ+,p describes a steady dc superconducting state in which

a steady dc supercurrent jc = −(qc/mc)p flows down the wire into the plane. On the
plane there is supercurrent flowing radially outwards with a total current outflow equal to
jc . In addition there is a circulating current in the plane generating a magnetic moment
M+ and a magnetic flux �+. Similar remarks apply to �c

λ−,p .
6. In the direct sum space H±(
(E2

h)) we can define the magnetic moment and magnetic
flux operators as

M̂± = M̂+ ⊕C M̂−, (86)

�̂± = �̂+ ⊕C �̂−. (87)

7. All the above operators defined in H+(
(E2
h)), H−(
(E2

h)) and H±(
(E2
h)) can be

extended to the composite Hilbert spaces Hc+, Hc− and Hc±, i.e., we have

M̂c
+ = 0̂(E−) ⊕ M̂+, M̂c

− = 0̂(E−) ⊕ M̂−, M̂c
± = 0̂(E−) ⊕ M̂±, (88)

and similar for �̂c+, �̂c− and �̂c±.
8. In the composite space Hc± there is the possibility of a superposition of a pair of opposing

circulating supercurrents in state �c
λ±,p,(a+,a−). For examples for a+ = 1/

√
2 and a− =

±1/
√

2 we have the following linear combinations:

�c
λ±,p,(+) = 1√

2

(
�c

λ+,p + �c
λ−,p

)
= e-ipx ⊕ eiλ±

√
2

(
ψ+,p(r, θex) + ψ−,p(r, θex)

)
, (89)

�c
λ±,p,(−) = 1√

2

(
�c

λ+,p − �c
λ−,p

)
= e-ipx ⊕ eiλ±

√
2

(
ψ+,p(r, θex) − ψ−,p(r, θex)

)
. (90)

These two combinations correspond to a zero angular momentum expectation value, and
hence a zero current expectation value, e.g.,

〈�c
λ±,p,(+) | L̂c

±�c
λ±,p,(+)〉 (91)

= lim
ra→0,ra→∞

∫ rb
ra

∫ 2π

0 (ψ+,p + ψ−,p)∗L̂±(ψ+,p + ψ−,p)rdrdθex∫ rb
ra

∫ 2π

0 |(ψ+,p + ψ−,p)|2rdrdθex

= 0. (92)

Intuitively this corresponds to having currents flowing in both clockwise and anti-
clockwise directions. The energy expectation value is 〈�c

λ±,p,(+) | L̂c±�c
λ±,p,(+)〉 =

E = p2/2mc .
9. As in the case of a superconducting ring with a Josephson junction a superposition of

two opposing circular supercurrents can be regarded as a Schrödinger’s cat state [19]. We
have a similar situation here in �c

λ±,p,(+) which will be investigated in the next section.
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5 Schrödinger’s Cat States

One way to facilitate an experimental test on the existence of the various states discussed
earlier is to separate them in terms of their energy, e.g., one may want to separate the two
states �c

λ+,p and �c
λ−,p in terms of their energy [19]. This can be achieved by the application

of an external magnetic field to induce a Zeeman effect in the condensate. A uniform and
constant external magnetic field of magnitude B in the x-direction is applied perpendicularly
to the superconducting plane. Let us consider the following three cases in the weak field
approximation [16, 20]:

1. In Hc+ the magnetic field would amount to the addition to the Hamiltonian of a term
−BM̂c+, i.e., the Hamiltonian Ĥ c+ becomes

Ĥ c
+,B = Ĥ c

+ − BM̂c
+. (93)

This new Hamiltonian admits �c
λ+,p as an eigenfunction but with a higher energy value

E+,B given by

E+,B = E + �E, E = p2

2mc

, �E = 1

2
BμB. (94)

2. Similar results apply to Hc− leading to a new Hamiltonian Ĥ c
−,B which admits �c

λ−,p as
an eigenfunction but with a lower energy value

E−,B = E − �E. (95)

3. In the Hilbert space Hc
π,± the Hamiltonian is

Ĥ c
±,B = Ĥ c

± − BM̂c
±. (96)

The wave function �c
λ±,p,(+) is not an eigenstate of this Hamiltonian. Under Ĥ c

±,B the
wave function �c

λ±,p,(+) will evolve according to

�c
λ±,p,(+),t = 1√

2

(
�c

λ+,pe−iω+t + �c
λ−,pe−iω−t

)
(97)

= e−iωt

√
2

(
�c

λ+,pe−i�ωt + �c
λ−,pei�ωt

)
, (98)

where

ω+ = E+,B/�, ω− = E−,B/�, ω = E/�, �ω = �E/�. (99)

This is a solution of the Schrödinger’s equation with Hc
π,± as the Hamiltonian, i.e.,

i�
∂�c

λ±,p,(+),t

∂t
= Ĥ±,B�c

λ±,p,(+),t . (100)

We can rewrite the �c
λ±,p,(+),t as

�c
λ±,p,(+),t = e−iωt

√
2

(
�c

λ±,p,(+) cos�ωt − i�c
λ±,p,(−) sin�ωt

)
. (101)

It follows that the time evolution of �c
λ±,p,t is characterized by an oscillation between

�c
λ±,p,(+) and �c

λ±,p,(−) [7] (p. 604).
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4. It would be interesting to see if it is possible to excite the ground state �c
λ−,p into the state

�c
λ+,p by injecting an amount of energy 2�E. In other words, the absorption of such an

amount of energy can provide an experimental evidence for the transition from �c
λ−,p

into the state �c
λ+,p . The reverse processes would involve the emission of energy 2�E.

An absorption of energy �E from the ground state �c
λ−,p would mean the transition from

�c
λ−,p to the Schrödinger’s cat state �c

λ±,p,(+) or �c
λ±,p,(−). A similar remark applies to

emission of energy �E. These would provide experimental evidence for Schrödinger’s
cat states.

6 Concluding Remarks

Quantisation by parts in an appropriate path space allows the construction of a consistent
model of the macroscopic superconducting quantum circuit of the half-line/plane geometry.
The theory predicts that:

1. The circulating current on the plane can only generate a magnetic moment of magnitude
half of a Bohr magneton and a magnetic flux half that of the magnetic flux quantum of a
superconducting ring.

2. Under a weak magnetic field the energy difference between the two states �c
λ−,p and

�c
λ+,p corresponding respectively to the supercurrent circulating in the clockwise and

anti-clockwise directions in the plane is 2�E = BμB .
3. There is also the possibility of a superposition of the two states of opposing circulating

currents resembling a Schrödinger’s cat situation. Such a superposed state, e.g., �c
λ±,p,(+),

has an energy lying between that of �c
λ−,p and �c

λ+,p . Indeed, a desire for a zero angular
momentum state for the system would favour such a superposition.

4. An experimental observation on the system’s energy absorption or emission can test the
validity of our theory. An absorption or emission of energy of 2�E would lend support
to the existence of the states �c

λ−,p and �c
λ+,p , and an absorption or emission of energy

of �E would support the existence of their superposition. The circuit can therefore serve
as a platform for experiments probing of the existence or otherwise of Schrödinger’s cat
states.

The need for quantisation in the path space is a direct consequence of the topology of our
circuit geometry. An experimental confirmation of our results would justify both the quan-
tisation by parts scheme and the path space formulation of quantum mechanics. The present
method can be extended to more complex superconducting circuits and as well as Bose
Einstein condensate.

Appendix 1: Momentum Operators in Hc

The operator p̂0(E
−) in H(E−) has deficiency indices (0,1) [7] (p. 127, p. 210). Its negative

deficiency subspace is one-dimensional spanned by normalized function

ϕ1(x) =
√

2

�
ex/�. (102)

On the other hand p̂r0(E
2
h) in Ln(E

2
h) has deficiency indices (1,0). Its positive deficiency

subspace is one-dimensional spanned by

ϕ2n(r, θ) =
√

1

�πr
e−r/� ⊗ ηn(θ). (103)
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The operator P̂ c
0,n in Hc

n has deficiency indices (1,1) with its positive and negative deficiency
subspaces spanned by normalized functions

ϕc
1n(x, r, θ) =

√
2

�
ex/� ⊕ 0n(E

2
h) (104)

and

ϕc
2n(x, r, θ) = 0(E−) ⊕

√
1

�πr
e−r/� ⊗ ηn(θ), (105)

where 0n(E
2
h) is the restriction of 0(E2

h) to Ln(E
2
h). These normalized functions in Hc

n are
unitarily related [7] (p. 110). It follows from a von Neumann formula that a selfadjoint
extension of P̂ c

λn
of P̂ c

0,n must act on a domain with elements of the form [7] (pp. 128–130,
p. 212)

�c
λn

= �c
0,n + α

(
ϕc

2n + e−iλnϕc
1n

)
, λn ∈ (−π,π], (106)

where �c
0,n ∈ D(P̂ c

0 ) ∩ Hc
n. For �c

λn
of the form

�c
λn

= φ1(x) ⊕ φ2(r) ⊗ ηn(θ), (107)

equation (106) imposes a boundary condition at the junction on φ1 and φ2, i.e.,

lim
x→0−

eiλnφ1(x) = lim
r→0+

√
2πrφ2(r). (108)

The operator P̂ c
λn

admits the following generalized eigenfunctions

�c
λn,p = e-ipx ⊕ eiλn

(
1√
2πr

e-ipr ⊗ ηn(θ)

)
(109)

which satisfy the above boundary condition [7] (p. 212).
The operator p̂r0(E

2
h) in H(E2

h) has a unique maximal symmetric extension p̂r in H(E2
h),

which is often identified as the radial momentum operator in H(E2
h). It is of interest to

note that p̂r does not admit any generalized eigenfunction on account of the boundary con-
dition at r = 0 [11]; the same statement applies to p̂0(E

2
h) in H(E−) [7] (pp. 126–127).

On the other hand the composite momentum P̂ c
λn

in Hc
n does admit generalized eigenfunc-

tions �c
λn,p which satisfy boundary condition in (108). The intrinsic reason is that p̂r is

only strictly maximal symmetry while P̂ c
λn

is selfadjoint. Such results can have important
physical consequences on certain quantum circuits [7] (pp. 542–548). For a discussion of
generalized eigenfunctions see [7] (p. 126, pp. 447–448).

Appendix 2: Hamiltonian Operators in Hc

Restricted to subspace Ln(E
2
h) the operator Ĥ20 reduces to

Ĥ20,n = − �
2

2mc

(
∂2

∂r2
+ 1

r

∂

∂r
− n2

r2

)
0

⊗ În(C). (110)
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Here În(C) is the restriction of Î(C) to Ln(C). Define a set of new operators ĥ20,n in H(R+)

by

ĥ20,n = − �
2

2mc

(
∂2

∂r2
+ 1

r

∂

∂r
− n2

r2

)
0

(111)

acting on C∞
0 (R+). This enables us to rewrite Ĥ20,n and Ĥ20 as a direct sum within H(E2

h),
i.e.,

Ĥ20,n = ĥ20,n ⊗ În(C) and Ĥ20 = ⊕n

(̂
h20,n ⊗ În(C)

)
. (112)

Now introduce two operators, one in ⊕n�=0 Ln(E
2
h) and one in L2(E−) ⊕ L0(E

2
h):

1. In ⊕n�=0 Ln(E
2
h): ĥ = ⊕n�=0(̂h20,n ⊗ În(C)), with h̄ denoting its closure.

2. In L2(E−) ⊕ L0(E
2
h): K̂0 = Ĥ10 ⊕ (̂h20,0 ⊗ Î0(C)), with K̂ denoting a selfadjoint ex-

tension.

Exner and Seba [8, 9] show that any selfadjoint extension Ĥ c of Ĥ c
0 in Hc is of the form

Ĥ c = K̂ ⊕ h̄. (113)

Moreover these selfadjoint extensions can be characterized by boundary conditions. Let
�c = ψ1(x) ⊕ ψ2(r) ⊗ η(θ) be a member of Hc . Define the following so-called boundary
values of �c at the boundary defined by x = 0 and r = 0:

V11(�
c) = lim

x→0−
ψ1(x), V12(�

c) = lim
r→0+

ψ2(r)

ln r
; (114)

V21(�
c) = lim

x→0−

dψ1

dx
, V22(�

c) = lim
r→0+

(
ψ2(r) − V12(�

c) ln r
)
. (115)

Let us call V11(�
c) and V12(�

c) the first set of boundary values and V21(�
c) and V22(�

c)

the second set of boundary values. Then a selfadjoint extension Ĥ c of Ĥ c
0 can be specified

by its domain consisting of elements of Hc necessarily satisfying one of the following five
classes of boundary conditions with suitably chosen numerical constants A,B,C,D [8]:

1. Class 1

V21(�
c) = AV11(�

c) + BV12(�
c), (116)

V22(�
c) = CV11(�

c) + DV12(�
c). (117)

In other words the second set of boundary values are expressible in terms of a linear
combination of the first set of boundary values.

2. Class 2

V12(�
c) = AV11(�

c), (118)

V22(�
c) = CV11(�

c) + DV21(�
c). (119)

3. Class 3

V11(�
c) = 0, (120)

V22(�
c) = DV12(�

c). (121)
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4. Class 4

V12(�
c) = 0, (122)

V21(�
c) = AV11(�

c). (123)

5. Class 5

V11(�
c) = V12(�

c) = 0. (124)

For �c
λn,p we have the following boundary values:

V11(�
c
λn,p) = 1, V12(�

c
λn,p) = −∞, (125)

V21(�
c
λn,p) = -ip, V22(�

c
λn,p) = ∞, (126)

where the infinity sign for V12(�
c
λn,p) and V12(�

c
λn,p) symbolizes a complex number of infi-

nite magnitude. Clearly these boundary values violate each of the above classes of boundary
conditions. This shows that �c

λn,p cannot be a generalized eigenfunction of the any selfad-
joint extension of Hc

0.

Appendix 3: Momentum Operators in Hc
γ,n

Operator P̂ c
0γ,n in Hc

γ,n has deficiency indices (1,1) with its positive and negative deficiency
subspaces spanned by normalized functions

φc
2n(x, r, θ) = 0(E−) ⊕

√
1

�πr
e−r/� ⊗ ηγ,n(θex), (127)

and

φc
1n(x, r, θ) =

√
2

�
ex/� ⊕ 0n(
(E2

h)), (128)

where 0n(
(E2
h)) is the restriction of the zero element 0(
(E2

h)) ∈ Hγ (
(E2
h)) to

Hγ,n(
(E2
h)). The arguments in Appendix 1 apply to obtain the selfadjoint extensions of

P̂ c
0γ,n in Hc

γ,n.

Appendix 4: Generalized Eigenfunctions and Normalization

The expectation value of an observable Â with respect to an unnormalized vector ψ(x) in
the domain of Â is given by

〈ψ | Âψ〉 = lim
xa→−∞,xb→∞

∫ xb

xa
ψ∗(x)Âψ(x)dx∫ xb

xa
|ψ(x)|2 dx

. (129)

This expression can be extended to generalized eigenfunctions of an observable which are
not normalizable in order to retain a formal concept of expectation values for generalized
eigenfunctions. To illustrate such a normalization procedure take the simple example of the



304 Int J Theor Phys (2009) 48: 282–304

momentum operator −i�d/dx in the Hilbert space L2(E) with the plane waves φ(x) =
exp(-ipx) as generalized eigenfunctions. We can define the expectation value as

〈φ | (−i�d/dx)φ〉 = lim
xa→−∞,xb→∞

∫ xb

xa
φ∗(x)(−i�d/dx)φ(x)dx∫ xb

xa
|φ(x)|2dx

= p. (130)

For a global quantity in our two-branch circuit we have to carry out the normalization
procedure on the two branches separately. Each branch will formally produce a value. The
expectation value for the circuit as a whole would be the sum of the values in the two
branches divided by two. So, for the linear momentum P̂ c

γ,λn
in �c

γ,λn,p the expectation
value is given by

〈�c
γ,λn,p | P̂ c

γ,λn
�c

γ,λn,p〉 (131)

= 1

2

(
lim

xa→−∞,xb→0

∫ xb

xa
φ∗(x)(−i�d/dx)φ(x)dx∫ zb

za
|φ(x)|2 dx

(132)

+ lim
ra→0,rb→∞

∫ rb
ra

∫ 2π

0 ψ∗
γ,n,p(r, θex)[−i�(∂/∂r + 1/2r)]ψγ,n,p(r, θex)rdrdθex∫ rb

ra

∫ 2π

0 |ψγ,n,p(r, θex)|2rdrdθex

)
(133)

= p. (134)

For a quantity localized in the plane the normalization procedure is also needed, albeit
only on the plane. An example is the magnetic moment generated by a circulating current
on the plane. This is a quantity localized in the plane. Integrating the element of magnetic
moment in (74) produces an infinite result. A finite result is obtained with the normalized
expression in (75). A similar argument applies to the calculation of the magnetic flux.
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